A Novel Antioxidant Multitarget Iron Chelator M30 Protects Hepatocytes against Ethanol-Induced Injury

نویسندگان

  • Jia Xiao
  • Yi Lv
  • Bin Lin
  • George L Tipoe
  • Moussa B H Youdim
  • Feiyue Xing
  • Yingxia Liu
چکیده

The multitarget iron chelator, M30, is a novel antioxidant and protective agent against oxidative stress in a spectrum of diseases. However, there is no report regarding its role in liver diseases. Since oxidative stress is one of the major pathological events during the progression of alcoholic liver diseases, the protective effects and mechanisms of M30 on ethanol-induced hepatocyte injury were investigated in this study. Rat hepatocyte line BRL-3A was pretreated with M30 prior to ethanol treatment. Cell death, apoptosis, oxidative stress, and inflammation were examined. Specific antagonists and agonists were applied to determine the involvements of hypoxia inducible factor-1 alpha (HIF-1α) and its upstream adenylate cyclase (AC)/cyclic AMP (cAMP)/protein kinase A (PKA)/HIF-1α/NOD-like receptor 3 (NLRP3) inflammasome pathway. We found that M30 significantly attenuated ethanol-induced cellular death, apoptosis, production of reactive oxygen species (ROS), and secretion of inflammatory cytokines and inhibited activation of the AC/cAMP/PKA/HIF-1α/NLRP3 inflammasome pathway. Inhibition and activation of the AC/cAMP/PKA/HIF-1α pathway mimicked and abolished the effects of M30, respectively. In conclusion, inhibition of the AC/cAMP/PKA/HIF-1α/NLRP3 inflammasome pathway by M30 partially contributes to its attenuation of hepatocyte injury caused by ethanol exposure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective role of licochalcone B against ethanol-induced hepatotoxicity through regulation of Erk signaling

Objective(s): Oxidative stress has been established as a key cause of alcohol-induced hepatotoxicity. Licochalcone B, an extract of licorice root, has shown antioxidative properties. This study was to investigate the effects and mechanisms of licochalcone B in ethanol-induced hepatic injury in an in vitro study. Materials and Methods: An in vitro model of Ethanol-induced cytotoxicity in BRL cel...

متن کامل

Hepatocyte growth factor protects hepatocytes against oxidative injury induced by ethanol metabolism.

Hepatocyte growth factor (HGF) is involved in many cellular responses, such as mitogenesis and apoptosis protection; however, its effect against oxidative injury induced by ethanol metabolism is not well understood. The aim of this work was to address the mechanism of HGF-induced protection against ethanol-generated oxidative stress damage in the human cell line VL-17A (cytochrome P450 2E1/alco...

متن کامل

Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators.

Dysfunction of the ubiquitin-proteasome system (UPS) and accumulation of iron in substantia nigra (SN) are implicated in the pathogenesis of Parkinson's disease (PD). UPS dysfunction and iron misregulation may reinforce each other's contribution to the degeneration of dopamine (DA) neurons. In the present study, we use a new brain-permeable iron chelator, VK-28 [5-(4-(2-hydroxyethyl) piperazin-...

متن کامل

Reduction in mitochondrial iron alleviates cardiac damage during injury

Excess cellular iron increases reactive oxygen species (ROS) production and causes cellular damage. Mitochondria are the major site of iron metabolism and ROS production; however, few studies have investigated the role of mitochondrial iron in the development of cardiac disorders, such as ischemic heart disease or cardiomyopathy (CM). We observe increased mitochondrial iron in mice after ischem...

متن کامل

Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons.

Neuronal death in Parkinson's disease (PD) is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accumulation and oxidative damage are conditions commonly found in PD, we tested the possible neuritogenic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015